APPLIED THERMODYNAMICS D201 2004

8 The analysis by mass of a solid fuel is as follows:

Carbon 70%, Hydrogen 15%, Oxygen 5%, Ash 10%.

The fuel is burnt with 20% excess air. Assuming complete combustion, calculate

- (a) the composition by mass of the products of combustion,
- (b) the dewpoint,
- (c) for each kg of fuel burnt, the mass of water which will condense when the products of combustion are cooled at a constant pressure to $20\,^{\circ}\text{C}$.

Assume that the barometric pressure is 1 atm.

C +	$O_2 \leftrightarrow$	CO_2	$2H_2 +$	$O_2 \leftrightarrow$	$2H_2O$
12	32	44	4	32	36
0.7	1.867	2.57	0.15	1.2	1.35

There are .7/12 = 0.05833 kmol of C and 0.15/2 = 0.075 kmol of H₂

Total O_2 needed = 1.867 + 1.2 - 0.05 = 3.0167 kg

Air needed = 3.0167/0.233 = 12.947 kg

Actual air $12.947 \times 1.2 = 15.537 \text{ kg}$

Nitrogen in this air = $0.77 \times 15.537 = 11.963 \text{ kg}$

oxygen in this air = 3.620 Oxygen used = 3.0167 Oxygen left over = 0.603 kg

PRODUCTS

	kmol	mass	%
N_2	0.427	11.963	72.6
CO_2	0.0584	2.57	15.6
H_2O	0.075	1.35	8.2
O_2	0.01884	0.603	3.6
Total	0.5792	16.486	100

If everything ends up as gas then the partial pressure of H_2O is $p_{H2O} = (0.075/0.5792) \times 1 \text{ atm} = 0.1295 \text{ atm} = 0.131 \text{ bar}$

The corresponding saturation temperature is 51.2°C (The dew Point)

If cooled to 20° C some condensation must occur and the vapour left will be dry saturated vapour. ps at 20° C is 0.02337 bar

Let the kmol of H_2O vapour be x. The total kmol is the same = .5792 - 0.075 + x = 0.5042 + x

$$p_{\text{H}_2\text{O}} = \frac{x}{0.5042 + x} \times 1.013 = 0.02337 \text{ bar}$$

$$0.01163 + 0.02307x = x$$

$$0.01163 = 0.9769x \qquad x = 0.0119 \text{ kmol}$$

The mass of vapour is $m = 0.0119 \times 18 = 0.2142 \text{ kg}$ Condensate formed is 1.35 - 0.2142 = 1.1358 kg