7 (a) Sketch the velocity diagram for the mean-diameter stator and rotor sections of a stage of an axial-flow reaction turbine. Assume equal inlet and outlet velocities to the stage and constant axial flow velocity. Indicate on the diagram all the angles which the absolute and relative velocity vectors make with the tangential, which is the whirl, direction.
(b) The degree of reaction $\mathbf{D R}$ is the ratio of the rotor enthalpy drop to the stage enthalpy drop. Prove that

$$
\mathrm{DR}=\frac{\mathrm{V}_{\mathrm{a}}}{2 \mathrm{U}}\left(\cot \beta_{2}-\cot \beta_{1}\right)
$$

where $\frac{V_{a}}{U}$ is the ratio of the axial flow velocity to the rotor blade velocity, and β_{1}, and β_{2}, are the rotor blade inlet and outlet angles respectively.
(c) The mean-diameter section of a stage with $\mathbf{D R}=0.5$, has a blade velocity of $150 \mathrm{~m} / \mathrm{s}$ and an axial gas velocity of $120 \mathrm{~m} / \mathrm{s}$. If the temperature drop across the stage is $25^{\circ} \mathrm{C}$ and the specific heat capacity at constant pressure C_{P} is $1.0 \mathrm{~kJ} / \mathrm{kgK}$, calculate all stator and rotor angles.

The stationary vane makes an angle α_{1} with the direction of rotation. The moving vane has an angle β_{1} at inlet and β_{2} at outlet. c is the absolute velocity of the steam and v is the relative velocity. The velocity diagram is as shown if the absolute velocity entering the stationary vanes is the same as the absolute velocity c_{2} at exit from the moving rotor. In this event it follows that $\beta_{1}=\alpha_{2}$ and $\beta_{2}=\alpha_{1}$.
$\mathrm{U}=$ blade velocity. $\mathrm{V}_{\mathrm{a}}=$ Axial velocity.
$\Delta \mathrm{v}_{\mathrm{w}}=$ change in velocity in whirl direction.
Enthalpy at entry to stage $=h_{0}$
Enthalpy at exit from stage $=h_{2}$

Change in enthalpy $=$ work given to the rotor
$\mathrm{h}_{\mathrm{o}}-\mathrm{h}_{2}=\mathrm{U} \Delta \mathrm{v}_{\mathrm{w}} \quad \Delta \mathrm{v}_{\mathrm{w}}=\mathrm{V}_{\mathrm{a}}\left(\cot \beta_{1}+\cot \beta_{2}\right)$
$\mathrm{h}_{1}=$ enthalpy at entry to the rotor. Change in enthalpy over the rotor = change in KE over the rotor
$\mathrm{h}_{1}-\mathrm{h}_{2}=\frac{\mathrm{v}_{2}^{2}-\mathrm{v}_{1}^{2}}{2}$
$\mathrm{v}_{2}=\mathrm{V}_{\mathrm{a}} \operatorname{cosec} \beta_{2} \quad \mathrm{v}_{1}=\mathrm{V}_{\mathrm{a}} \operatorname{cosec} \beta_{1}$
$h_{1}-h_{2}=V_{a}^{2}\left\{\frac{\left(\operatorname{cosec}^{2} \beta_{2}-\operatorname{cosec}^{2} \beta_{1}\right)}{2}\right\}$ but since

$(\operatorname{cosec} \beta)^{2}=(\cot \beta)^{2}+1$
$\mathrm{h}_{1}-\mathrm{h}_{2}=\mathrm{V}_{\mathrm{a}}^{2}\left\{\frac{\left(\cot ^{2} \beta_{2}-\cot ^{2} \beta_{1}\right)}{2}\right\}$
$\mathrm{h}_{1}-\mathrm{h}_{2}=\frac{\mathrm{V}_{\mathrm{a}}^{2}}{2}\left(\cot \beta_{2}+\cot \beta_{1}\right)\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$\mathrm{DR}=\frac{\mathrm{h}_{1}-\mathrm{h}_{2}}{\mathrm{~h}_{\mathrm{o}}-\mathrm{h}_{2}}=\frac{\mathrm{V}_{\mathrm{a}}^{2}}{2}\left\{\frac{\left(\cot \beta_{2}+\cot \beta_{1}\right)\left(\cot \beta_{2}-\cot \beta_{1}\right)}{U V_{\mathrm{a}}\left(\cot \beta_{2}+\cot \beta_{1}\right)}\right\}=\frac{\mathrm{V}_{\mathrm{a}}}{2 \mathrm{U}}\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$\mathrm{DR}=0.5 \quad \mathrm{U}=150 \mathrm{~m} / \mathrm{s} \quad \mathrm{V}_{\mathrm{a}}=120 \mathrm{~m} / \mathrm{s} \quad \Delta \mathrm{T}=25 \mathrm{~K} \quad \mathrm{C}_{\mathrm{P}}$ is $1.0 \mathrm{~kJ} / \mathrm{kgK}$
$\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}=$ change in enthalpy over the stage $=\mathrm{U} \Delta \mathrm{v}_{\mathrm{w}}$
$\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}=$ change in enthalpy over the stage $=\Delta \mathrm{v}_{\mathrm{w}}$
$\Delta \mathrm{v}_{\mathrm{w}}=\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T} / \mathrm{U}=45000 / 150=300 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{v}_{\mathrm{w}}=\mathrm{V}_{\mathrm{a}}\left(\cot \beta_{1}+\cot \beta_{2}\right) \quad 300=120\left(\cot \beta_{1}+\cot \beta_{2}\right) \quad \cot \beta_{1}=2.5-\cot \beta_{2}$
$\mathrm{DR}=0.5=\frac{\mathrm{V}_{\mathrm{a}}}{2 \mathrm{U}}\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$0.5=\frac{120}{2 \times 150}\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$1.25=\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$\cot \beta_{1}=\cot \beta_{2}-1.25$
$\cot \beta_{1}=2.5-\cot \beta_{2}=\cot \beta_{2}-1.25$
$\begin{array}{lll}2 \cot \beta_{2}=3.75 \quad \cot \beta_{2}=1.875 & \tan \beta_{2}=0.5333 & \beta_{2}=28^{\circ}=\alpha_{1} \\ \cot \beta_{1}=2.5-\cot \beta_{2}=0.625 & \tan \beta_{1}=1.6 & \beta_{2}=58^{\circ}=\alpha_{2}\end{array}$
$\cot \beta_{1}=2.5-\cot \beta_{2}=0.625$
$\tan \beta_{1}=1.6$
$\beta_{2}=58^{\circ}=\alpha_{2}$

