Q3 In a water-cooled nuclear reactor the coolant water to the reactor is divided into high-pressure and low-pressure circuits. The high-pressure circuit generates $200 \mathrm{~kg} / \mathrm{s}$ of steam at 100 bar and $500^{\circ} \mathrm{C}$. The low-pressure circuit generates $100 \mathrm{~kg} / \mathrm{s}$ of dry saturated steam at 30 bar . A line diagram of the plant is shown.

The high-pressure steam expands in a high-pressure turbine to 30 bar with an isentropic efficiency of 90%, and the exhaust is mixed adiabatically with the low-pressure steam all of which is then expanded in a low-pressure turbine to 0.10 bar with an isentropic efficiency of 92%. The optimum quantity of dry saturated steam is bled at 5 bar from the low-pressure turbine into an open-type feed-water heater positioned prior to the separation into the two coolant-water circuits.
(a) Sketch the T-s and h-s diagrams for the cycle.
(b) Calculate the power developed and the cycle efficiency.

Neglect the feed-pumps work, and assume a straight line of condition for the low-pressure turbine.

Start with known points.
Point $1 \quad 100$ bar $500^{\circ} \mathrm{C} \quad \mathrm{h}=3373 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}=6.596 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Point 230 bar
Point $3 \quad 30$ bar dss $\quad \mathrm{h}=2803 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}=6.186 \mathrm{~kJ} / \mathrm{kg}$ K
Point 430 bar
Point 50.1 bar
Point 60.1 bar $\mathrm{sw} \quad \mathrm{h}=192 \mathrm{~kJ} / \mathrm{kg}$ (assumed to be saturated water in absence of information)
Point 85 bar
Point 95 bar sw $\quad \mathrm{h}=640 \mathrm{~kJ} / \mathrm{kg}$ (assumed to be saturated water in absence of information)
HP Turbine m = $200 \mathrm{~kg} / \mathrm{s}$
Ideal expansion $\quad s_{2}=s_{1}=6.596$ From $h-s$ chart the steam is superheated at 30 bar and $310^{\circ} \mathrm{C}$
$\mathrm{h}_{2^{\prime}}=3020 \mathrm{~kJ} / \mathrm{kg}$
$\eta=0.9=\frac{3373-\mathrm{h}_{2}}{3373-3020} \quad \mathrm{~h}_{2}=3055.3 \mathrm{~kJ} / \mathrm{kg}-$ the actual enthalpy
Power output $=200\left(h_{1}-h_{2}\right)=63540 \mathrm{~kW}$
MIXING $200 \mathrm{~h}_{2}+100 \mathrm{~h}_{3}=300 \mathrm{~h}_{4} \quad 200(3055.3)+100(2803)=891360=300 \mathrm{~h}_{4}$
$\mathrm{h}_{4}=2971.2 \mathrm{~kJ} / \mathrm{kg}$

LP TURBINE

First expansion to 5 bar
Point 430 bar $\mathrm{h}_{4}=2971.2 \mathrm{~kJ} / \mathrm{kg}$ Locate on $\mathrm{h}-\mathrm{s}$ chart and find $\mathrm{h}_{8}{ }^{\prime}=2620 \mathrm{~kJ} / \mathrm{kg}$
$\eta=0.92=\frac{2971.2-\mathrm{h}_{8}}{2971.2-2620} \quad \mathrm{~h}_{8}=2648.1 \mathrm{~kJ} / \mathrm{kg}$
Power out $=300(2971.2-2648.1)=96931.2 \mathrm{~kW}$
Expansion to 0.1 bar
Locate point 8 and then point ' $5 \mathrm{~h}_{5}$ ' $=2090 \mathrm{~kJ} / \mathrm{kg}$
$\eta=0.92=\frac{2648.1-h_{5}}{2648.1-2090} \quad h_{5}=2134.6 \mathrm{~kJ} / \mathrm{kg}$
Power out $=\mathrm{m}(2648.1-2134.6)=513.45 \mathrm{mkW} \mathrm{m}=$ mass flowing to condenser.

FEED HEATER

$\mathrm{y}_{8}+(300-\mathrm{y}) \mathrm{h}_{7}=300 \mathrm{~h}_{9} \mathrm{y}=$ mass bled at 5 bar
$\mathrm{h}_{6}=\mathrm{h}_{7}=192 \mathrm{~kJ} / \mathrm{kg}$
y $2648.1+(300-y) 192=300 \times 640$
$2648.1 \mathrm{y}+57600-192 \mathrm{y}=192000$
$2456.1 \mathrm{y}=134400 \quad \mathrm{y}=54.72 \mathrm{~kg} / \mathrm{s}$
$\mathrm{m}=300-54.72=245.28$ Power out of second part of expansion $513.45 \mathrm{~m}=125938.6 \mathrm{~kW}$
Total power from LP turbine $=96931.2+125938.6=222869.7 \mathrm{~kW}$
Total power out from both turbines $=222869.7+63540=286409.7 \mathrm{~kW}$ say 286.41 MW

BOILER

$\Phi(\mathrm{in})=200\left(\mathrm{~h}_{1}-\mathrm{h}_{11}\right)+100\left(\mathrm{~h}_{3}-\mathrm{h}_{10}\right) \mathrm{h}_{11}=\mathrm{h}_{10}=\mathrm{h}_{9}=640 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=200(3373-640)+100(2803-640)=762900 \mathrm{~kW}$ say 762.9 MW

CONDENSER

$\Phi($ out $)=(300-54.72)\left(\mathrm{h}_{5}-\mathrm{h}_{6}\right)=(300-54.72)(2134.6-192)=476481 \mathrm{~kW}$
Check $\mathrm{P}=\Phi(\mathrm{in})-\Phi($ out $)=762.9-476.48=286.4$ MW
$\eta=P / \Phi=286.41 / 1036.2=27.6 \%$

