THERMODYNAMICS 201 2003

Q3 A gaseous fuel has the following percentage composition by volume: CO 13%, H₂ 42%, CH₄ 25%, O₂ 2%, CO₂ 3%, N₂ 15%

Determine the wet and dry volumetric and gravimetric analyses of the products of combustion if 15% excess air is used. State all assumptions made and take air as 21% O_2 and 79% N_2 by volume. The relative atomic masses are hydrogen l, carbon 12, nitrogen 14 and oxygen 16.

VOLUMETRIC

CARBON MONOXIDE

 $2CO + O_2 \rightarrow 2CO_2 \\ 2 m^3 + 1 m^3 \rightarrow 2 m^3 \\ 0.13 m^3 + 0.065 m^3 \rightarrow 0.13 m^3 \\ HYDROGEN \\ 2H_2 + O_2 \rightarrow 2H_2O \\ 2 m^3 + 1 m^3 \rightarrow 2 m^3 \\ 0.42 m^3 + 0.21 m^3 \rightarrow 0.42 m^3 \\ METHANE \\ CH_4 + 2O_2 \rightarrow 2H_2O + CO_2 \\ 1 m^3 + 2 m^3 \rightarrow 2 m^3 + 1 m^3 \\ 0.25 m^3 + 0.5 m^3 \rightarrow 0.5 m^3 + 0.25 m^3 \\ Total oxygen required is <math>0.065 + 0.21 + 0.5 - 0.02 = 0.755 m^3$ Air required = $0.755/0.21 = 3.595 m^3$ Air supplied = $3.595 \times 1.15 = 4.135$

PRODUCTS			WET	DRY
H_2O	0.42 + 0.5 =	0.920 m^3	18.9%	0
O_2	$0.21 \times 4.135 - 0.755 =$	0.113 m^3	2.3%	2.9%
N_2	$0.79 \times 4.135 + 0.15 =$	3.417 m^3	70.3%	86.7%
CO_2	0.13 + 0.25 + 0.03 =	0.410 m^3	8.4%	10.4
Total		4.86/3.94	100%	100

GRAVIMETRIC

We convert volumes to masses using the formula $\frac{m_i}{m} = \frac{(V_i/V)\widetilde{m}_i}{\sum \{(V_i/V)\widetilde{m}\}_i}$

				WET
i	V_i/V	\widetilde{m}_i	$(V_i/V) \widetilde{m}_i$	\widetilde{m}_i / m
H_2O	0.189	18	3.40	12.3%
O_2	0.023	32	0.74	2.7%
N_2	0.703	28	19.7	71.5%
CO_2	0.084	44	3.7	13.4%
Total	1.0		27.54	100
				DRY
i	V_i/V	\widetilde{m}_i	$(V_i/V)\widetilde{m}_i$	\widetilde{m}_i / m
O_2	0.029	32	0.928	3.1%
N_2	0.867	28	24.276	81.5%
CO_2	0.104	44	4.576	15.4%
Total	1.0		29.78	100