
D225 DYNAMICS OF MECHANICAL SYSTEMS Q4 2004 
 
 
The diagram shows a two mass system with details. 
 
(a) Prepare appropriate mass and stiffness matrices for this system making clear what 

displacement co-ordinates have been chosen. 
 
(b) Determine the natural frequencies of the system. 
 
(c) For the lowest natural frequency, calculate the corresponding mode shape. 
 
(d) Use the principle of mass orthoganality to determine the other mode shape. 
 
(e) If sinusoidal forcing function is applied to the upper mass (the 30 kg mass), it is found that at 

one particular frequency the motion of that mass is zero. Calculate that frequency. 
 

 
SOLUTION 
(a) 
Balancing forces on m1 we have 0)( 1221111 =−−+ xxkxkxm &  
Balancing forces on m2 we have 0)( 122212 =−+ xxkxm &  
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The stiffness matrix is  ⎥
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x is the distance moved from the rest position. 
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To avoid trivial solutions we must have [ ] 0.det 2 =+− KMω  
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( )( ) ( )( ) 040000400004000030700002 22 =−−−+−+− ωω  
 

010x6.110x8.210x1.210x8060 9926234 =−+−− ωωω  
 
60ω4 – 2.18x106ω2 +1.2x109 = 0   
 
Solving the quadratic for ω2 we get ω2 = 35.77 x 103 and 560 
 
ω = 189.1 rad/s and 23.6 rad/s 
 
Check answers with the derived formulae 
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rad/s 23.63 and 189.1ω
558.7 and 35774ω
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(c)  I haven't come across mass orthoganality but the other mode shape is: 
 
Mode shapes are found by substituting the frequency into [-ω2 M + K]X = 0 where X is the mode shape 
vector. 
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6886x11 – 4000x12 = 0 
 
-4000x1 + 23290x2 = 0 
 
These are not simultaneous equations and we solve the ration x2 by putting x1 = 1 
 
6886 – 4000x2 = 0 hence x2 = 6886/4000 = 1.722 
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1X for the lowest frequency. 

(d) The other mode shape is ω = 189.1 
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1518x11 – 4000x12 = 0 
 
-4000x1 - 1032764x2 = 0 
 
These are not simultaneous equations and we solve the ration x2 by putting x1 = 1 
 
1518 – 4000x2 = 0 hence x2 = 0.3795 
 
 
(e) Without proof (see tutorials on 2 DOF systems) the forcing frequency must then correspond to 
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