The diagram shows a wheel centre C rolling on a horizontal surface. The wheel can spin freely about the horizontal shaft OC. Shaft OC is connected to at O to a vertical shaft OX though a clevis which acts a frictionless horizontal pivot.
The angular velocity of the vertical shaft is Ω and the angular acceleration is α. The torque applied to the vertical shaft is T. The axis set Oxyz moves with the wheel. The mass of the wheel is M and it has a polar moment of inertial J_{P} and diametral inertia J_{D}. All other elements of the system are assumed to have no mass. The radius of the wheel is Rand the length OC is 4 R .
a) Assuming that the wheel is rolling without any slip, derive expressions for the torque T , the normal force N and the friction force F in terms of $\Omega, \alpha, \mathrm{M}, \mathrm{J}_{\mathrm{P}}$ and J_{D}.
b) Given the coefficient of friction μ, for the contact between the wheel and the horizontal surface on which it rolls, produce an expression for the maximum torque T , which may be applied before slip
 occurs.

SOLUTION

The angular velocity and acceleration of the wheel is Ω_{z} and is related to Ω_{x}.

Linear velocity of C about O is $\Omega_{\mathrm{x}} 4 \mathrm{R}$ and this must be the same as the linear velocity of a point on the surface of the wheel Ω_{z} R.
Equating $\Omega_{\mathrm{z}}=4 \Omega_{\mathrm{x}}$ i.e. the wheel rotates 4 revolutions for every one revolution about OX
It follows that $\alpha_{z}=4 \alpha_{x}$
The spinning of the wheel will produce a gyroscopic couple of magnitude $\mathrm{J}_{\mathrm{P}} \Omega_{\mathrm{x}} \Omega_{\mathrm{z}}=4 \mathrm{~J}_{\mathrm{P}} \Omega_{\mathrm{x}}{ }^{2}$
The reaction torque is deduced as shown showing that the wheel will tend to push down onto the surface.
The Normal force N is the sum of the weight and the force due to the reaction torque.
$\mathrm{N}=\mathrm{Mg}+4 \mathrm{~J}_{\mathrm{P}} \Omega_{\mathrm{x}}{ }^{2} / 4 \mathrm{R}$
$\mathrm{N}=\mathrm{Mg}+\mathrm{J}_{\mathrm{P}} \Omega_{\mathrm{x}}{ }^{2} / \mathrm{R}$

The acceleration of the wheel about C is $\alpha_{\mathrm{z}}=4 \alpha_{\mathrm{x}}$
The torque to accelerate the wheel about C is $T_{z}=J_{P} \alpha_{z}=4 J_{P} \alpha_{x}$
The force applied by the surface to produce this is F
$\mathrm{F}=\mathrm{T}_{\mathrm{Z}} / \mathrm{R}=4 \mathrm{~J}_{\mathrm{P}} \alpha_{\mathrm{x}} / \mathrm{R}$
$\mathrm{F}=4 \mathrm{~J}_{\mathrm{P}} \alpha_{\mathrm{x}} / \mathrm{R}$

This produces a torque about OX of $\mathrm{T}=4 \mathrm{RF}=4 \mathrm{R}\left(4 \mathrm{~J}_{\mathrm{P}} \alpha_{\mathrm{x}} / \mathrm{R}\right)=16 \mathrm{~J}_{\mathrm{P}} \alpha_{\mathrm{x}}$
The acceleration about the axis OX also requires an inertia torque $\mathrm{T}=\mathrm{J}_{\mathrm{ox}} \alpha_{\mathrm{x}}$ J_{ox} is found with the parallel axis theorem
$\mathrm{J}_{\mathrm{ox}}=\mathrm{Mk}^{2}+\mathrm{J}_{\mathrm{D}} \quad \mathrm{k}=4 \mathrm{R} \quad \mathrm{J}_{\mathrm{ox}}=16 \mathrm{MR}^{2}+\mathrm{J}_{\mathrm{D}}$
$\mathrm{T}=\alpha\left\{16 \mathrm{MR}^{2}+\mathrm{J}_{\mathrm{D}}\right\}$
The total torque about OX is $\mathrm{T}_{\mathrm{x}}=16 \mathrm{~J}_{\mathrm{P}} \alpha_{\mathrm{x}}+\alpha_{\mathrm{x}}\left\{16 \mathrm{MR}^{2}+\mathrm{J}_{\mathrm{D}}\right\}$
$T_{x}=\alpha_{x}\left[16 \mathrm{~J}_{\mathrm{P}}+16 \mathrm{MR}^{2}+\mathrm{J}_{\mathrm{D}}\right]$
The wheel will slip when $\mathrm{F}=\mu \mathrm{N}$
$\mathrm{F}=\mu\left(\mathrm{Mg}-\mathrm{J}_{\mathrm{P}} \Omega_{\mathrm{x}}{ }^{2} / \mathrm{R}\right)$
$\mathrm{T}=\mathrm{FR}=\mu\left(\mathrm{Mg}-\mathrm{J}_{\mathrm{P}} \Omega_{\mathrm{x}}{ }^{2} / \mathrm{R}\right) \mathrm{R}=\mu\left(\mathrm{MRg}-\mathrm{J}_{\mathrm{P}} \Omega_{\mathrm{x}}{ }^{2}\right)$ due to friction force only
To this must be added the torque $\alpha_{x}\left\{16 \mathrm{MR}^{2}+\mathrm{J}_{\mathrm{D}}\right\}$
$\mathrm{T}_{\mathrm{x}}=\mu\left(\mathrm{MRg}+\mathrm{J}_{\mathrm{P}} \Omega_{\mathrm{x}}^{2}\right)+\alpha_{\mathrm{x}}\left\{16 \mathrm{MR}^{2}+\mathrm{J}_{\mathrm{D}}\right\}$
This is the torque when slip occurs assuming that acceleration still occurs about OX.

Please report any corrections or changes to admin@www.freestudy.co.uk

