COMMENT - the original question appears to have been well dressed up to make a simple problem look much harder. Most of the data in the original question seems to be redundant. I think it is as simple as this but if you know different let me know.

A press for stamping out blanks uses a cam on a shaft with a flywheel running at $5 \mathrm{rev} / \mathrm{s}$. The flywheel has a moment of inertia of $20 \mathrm{~kg} \mathrm{~m}^{2}$. 200 J of energy are absorbed each time a blank is formed. The shaft is driven with a constant toque.
(a) Calculate the torque on the shaft.

SOLUTION

Energy absorbed per rev (2π radian) $=200 \mathrm{~J}=$ Angle x Torque $\mathrm{T}=$ $200 / 2 \pi=31.83 \mathrm{Nm}$
(b) Determine the angular velocity at the start and finish of the operation.

Punch

SOLUTION

Assume the mean speed is $5 \mathrm{rev} / \mathrm{s}=10 \pi \mathrm{rad} / \mathrm{s}$.
Max and min angular velocities are ω_{1} and ω_{2} respectively.
Coefficient of fluctuation of speed $\phi=\left(\omega_{1}-\omega_{2}\right) / \omega$
The energy absorbed = energy put back in during the rest of the cycle so it follows that the fluctuation in energy is $\mathrm{W}=200 \mathrm{~J}$
$\beta=\frac{\text { greatest fluctuation in kinetic energy }}{\text { work done }}$
$\beta=\frac{\frac{\mathrm{J} \omega_{2}^{2}}{2}-\frac{\mathrm{J} \omega_{1}^{2}}{2}}{\mathrm{~W}}=\frac{\mathrm{J}}{2 \mathrm{~W}}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)$ Factorise the bracket
$\beta=\frac{\mathrm{J}}{2 \mathrm{~W}}\left(\omega_{2}+\omega_{1}\right)\left(\omega_{2}-\omega_{1}\right)$
Since $\left(\omega_{2}+\omega_{1}\right)=2 \omega$ and $\left(\omega_{2}-\omega_{1}\right)=\varphi \omega$ then $\beta=\frac{\mathrm{J}}{2 \mathrm{~W}}(2 \omega)(\omega \varphi)$
$\beta \mathrm{W}=\mathrm{J} \omega^{2} \varphi$
$\beta \mathrm{W}=$ greatest fluctuation in energy $=200 \mathrm{~J}$
$\phi=\beta \mathrm{W} / \mathrm{J}_{\mathrm{p}} \omega^{2}=200 /\left\{20 \times(10 \pi)^{2}\right\}=200 / 19739=0.010132$
$\left(\omega_{1}-\omega_{2}\right)=\omega \phi=10 \pi \times 0.010132=0.3183 \mathrm{rad} / \mathrm{s}$
The speed variation either side of the mean is $0.3183 / 2=0.1591 \mathrm{rad} / \mathrm{s}$
$\omega_{1}=10 \pi+0.1591=31.575 \mathrm{rad} / \mathrm{s}$
$\omega_{2}=10 \pi-0.1591=31.257 \mathrm{rad} / \mathrm{s}$
(c) The punch has a mass of 25 kg . At the instant punching starts impulse is exchanged between the flywheel and punch. The punch velocity is related to the rotation of the cam by $\mathrm{v}=0.001 \Omega$ where Ω is degrees per second. Calculate the fraction of the speed lost at this instant.

SOLUTION

The examiner mentions referring a mass to a rotating inertia. The following is my uninformed first guess at the method and should be treated with care as it is certainly not correct.
$\Omega=5 \times 360=1800 \mathrm{deg} / \mathrm{s} \quad \omega=1800 \times \pi / 180=10 \pi \mathrm{rad} / \mathrm{s}$
$\mathrm{v}=0.001 \Omega=1.8 \mathrm{~m} / \mathrm{s}$
Normally $\mathrm{v}=\omega \mathrm{R}$ where R is the radius $=\mathrm{v} / \omega=1.8 / 10 \pi=0.0573 \mathrm{~m}$
We might guess that punch is effectively operated by a force at a radius of 0.0573 m but this does not appear to be needed.

Impulsive force $=\mathrm{M} \mathrm{dv} / \mathrm{dt}$
Impulsive torque $=\mathrm{J} \Delta \omega / \mathrm{t}=\mathrm{F}$ R so the impulsive force at radius R is $(\mathrm{J} / \mathrm{R}) \Delta \omega / \mathrm{t}$
Equate forces $(J / R) \Delta \omega=M \Delta v$
$\Delta \omega=$ R M $\Delta v / J$
$\omega_{1}-\omega_{2}=\mathrm{R} \times 25 \mathrm{x} \Delta \mathrm{v} / 20$
$\Delta \mathrm{v}$ is from 0 to v_{2} and v_{2} corresponds to $\omega_{2} R$
$\omega_{1}-\omega_{2}=\mathrm{R} \times 25 \times \omega_{2} / 20 \mathrm{R}$
$\omega_{1}-\omega_{2}=25 \times \omega_{2} / 20$
$\omega_{1}=1.25 \omega_{2} \quad \omega_{2}=0.8 \omega_{1}$

