Q7 2000
A thin circular disk of radius r is rotating about its z axis with angular velocity p. The yoke in which it is mounted rotates about the Z axis at angular velocity ω_{1}.
At the same time the whole assembly rotates about the axis O Y with constant angular velocity ω_{2}.
(a) Calculate the absolute velocity of point A at the instant shown.
(b) Calculate the absolute acceleration of point A at the instant shown.
Data Disk radius $\mathrm{r}=0.05 \mathrm{~m} \quad \mathrm{OB}=0.1 \mathrm{~m}$
Disk spin rate $\mathrm{p}=5 \mathrm{rev} / \mathrm{s} \quad \omega_{1}=2 \mathrm{rev} / \mathrm{s} \quad \omega_{2}=1 \mathrm{rev} / \mathrm{s}$

SOLUTION

I hope there is not some deeper meaning to this question concerning gyroscopes. Otherwise it seems a simple question
 off adding vectors. The choice of symbols is not very good as ω is normally used for rad/s.
(a) Point A has a velocity in the x direction of $-2 \pi \mathrm{pr}=-2 \pi(5)(0.05)=-1.571 \mathrm{~m} / \mathrm{s}$

Point A has a velocity in the z direction of $-2 \pi \omega_{1} r=-2 \pi(2)(0.05)=-0.628 \mathrm{~m} / \mathrm{s}$
Point A has a velocity in the z direction of $-2 \pi \omega_{2}(\mathrm{oB})=2 \pi(1)(0.1)=-0.628 \mathrm{~m} / \mathrm{s}$
Adding these up we have a total velocity in the z direction of $-1.257 \mathrm{~m} / \mathrm{s}$

The resulting velocity is $\mathrm{v}=\left(1.571^{2}+1.257^{2}\right)^{1 / 2}=2.01 \mathrm{~m} / \mathrm{s}$ $\theta=\tan ^{-1}(1.571 / 1.257)=51.3^{\circ}$
(b) The only accelerations present are centripetal (ang vel) ${ }^{2} \mathrm{x}$ radius
Point A has a centripetal acceleration as shown.
$\mathrm{a}_{1}=(2 \pi \mathrm{p})^{2} \times \mathrm{r}=(2 \pi 5)^{2} \times 0.05=49.35 \mathrm{~m} / \mathrm{s}^{2}$
Point A has another centripetal acceleration as shown.
$\mathrm{a}_{2}=(2 \pi 1)^{2} \times 0.1=3.95 \mathrm{~m} / \mathrm{s}^{2}$

Point A has a third centripetal acceleration as shown.
$\mathrm{a}_{3}=(2 \pi 2)^{2} \times 0.05=7.89 \mathrm{~m} / \mathrm{s}^{2}$
Now add the vectors

49.35

Resultant acceleration $\mathrm{a}=\left(9.9^{2}+49.35^{2}\right)^{1 / 2}$
$\mathrm{A}=50.33 \mathrm{~m} / \mathrm{s}^{2}$
$\phi=\tan ^{-1}(7.89 / 49.35)=9.2^{\circ}$
Direction as indicated.

