The rigid rotor shown from a machine has unbalanced masses on disks C, D and E as indicated. Discs B and F are to be used for balancing. The shaft rotates at $1000 \mathrm{rev} / \mathrm{min}$.
(i) Calculate the rotating forces on the bearings before balancing.
(ii) Determine the masses and their angular position that must be placed on B and F at a radius of 60 mm in order to produce complete balance.

SOLUTION

Angular velocity $\omega=2 \pi \mathrm{~N} / 60=2 \pi(2000) / 60=209.4 \mathrm{rad} / \mathrm{s}$
(i)

Use the tabular method. Make A the reference plane. X is measured from B
Remember centrifugal force $=M \omega^{2} r$ and the moment about the ref plane is $M \omega^{2} r x$ First find the out of balance moment.

Plane	Mass	Radius	x	Mr	Mrx
C	0.1	25	100	2.5	250
D	0.08	40	200	3.2	640
E	0.06	50	250	3.0	750

These are vectors and we must find the resultant Mrx vector. Draw vector diagram and produce the resultant as shown.

$\mathrm{R}=\left(29.5^{2}+625^{2}\right)^{1 / 2}=625.7 \mathrm{~kg} \mathrm{~mm}^{2} \quad \theta=\tan ^{-1}(29.5 / 625)=2.7^{\circ}$
The out of balance moment is $\omega^{2} \times 625.7 \times 10^{-6}=209.4^{2} \times 625.7 \times 10^{-6}=27.44 \mathrm{~N} \mathrm{~m}$ based on plane A.

The force on bearing G that produces an equal and opposite couple is $27.44 / 0.35=78.4 \mathrm{~N}$

We need the resultant force so we must draw the MR polygon.

The total Mr is $\left(0.602^{2}+4^{2}\right)^{1 / 2}=4.04 \mathrm{~kg} \mathrm{~mm}$.
The out of balance force $\mathrm{F}=4.04 \times 10^{-3} \times 209.4^{2}=177.1 \mathrm{~N}$
The force on bearing A is $177.1-78.4=98.7 \mathrm{~N}$ in the same direction.

angle shown with forces vertical
(ii) Take B as the reference plane

Plane	Mass	Radius	x	Mr	Mrx
B	M_{B}	60	0	$60 \mathrm{M}_{\mathrm{B}}$	0
C	0.1	25	50	2.5	125
D	0.08	40	150	3.2	480
E	0.06	50	200	3.0	600
F	M_{F}	60	250	$60 \mathrm{M}_{\mathrm{F}}$	$15000 \mathrm{M}_{\mathrm{F}}$

Draw the MRx vector diagram.

For complete balance R must be the MRx value for the mass on disk F .
$\mathrm{R}=\left(239.6^{2}+425^{2}\right)^{1 / 2}=487.9 \mathrm{~kg} \mathrm{~mm}^{2} \quad \theta=\tan ^{-1}(239.6 / 425)=29.4^{\circ}$
It follows that for complete balance $15000 \mathrm{M}_{\mathrm{F}}=487.9 \mathrm{~kg} \mathrm{~mm}^{2}$
$\mathrm{M}_{\mathrm{F}}=487.9 / 15000=0.0325 \mathrm{~kg}$
Now draw the MR vectors. Evaluate $60 \mathrm{M}_{\mathrm{F}}=1.952$

$\mathrm{R}=\left(1.53^{2}+0.845^{2}\right)^{1 / 2}=1.75 \mathrm{~kg} \mathrm{~mm}$
This represents the disc B so $60 \mathrm{M}_{\mathrm{B}}=1.75 \mathrm{~kg} \mathrm{~mm}$
$\mathrm{M}_{\mathrm{B}}=0.0292 \mathrm{~kg}$
The angle for mass B is $\tan ^{-1}(1.53 / 0.845)=61^{\circ}$ left of vertical down.

