The rigid rotor shown from a machine has unbalanced masses on disks C, D and E as indicated.

Discs B and F are to be used for balancing. The shaft rotates at 1000 rev/min.

(i) Calculate the rotating forces on the bearings before balancing.

(ii) Determine the masses and their angular position that must be placed on B and F at a radius of 60 mm in order to produce complete balance.

SOLUTION

Angular velocity $\omega = 2\pi \text{ N}/60 = 2\pi (2000)/60 = 209.4 \text{ rad/s}$

(i)

Use the tabular method. Make A the reference plane. X is measured from B Remember centrifugal force = $M \omega^2 r$ and the moment about the ref plane is $M \omega^2 r x$ First find the out of balance moment.

Plane	Mass	Radius	Х	Mr	Mrx
С	0.1	25	100	2.5	250
D	0.08	40	200	3.2	640
Е	0.06	50	250	3.0	750

These are vectors and we must find the resultant Mrx vector. Draw vector diagram and produce the resultant as shown.

 $R = (29.5^2 + 625^2)^{1/2} = 625.7 \text{ kg mm}^2 \qquad \theta = \tan^{-1}(29.5/625) = 2.7^{\circ}$

The out of balance moment is $\omega^2 \ge 625.7 \ge 10^{-6} = 209.4^2 \ge 625.7 \ge 10^{-6} = 27.44$ N m based on plane A.

The force on bearing G that produces an equal and opposite couple is 27.44/0.35 = 78.4 N

We need the resultant force so we must draw the MR polygon.

The total Mr is $(0.602^2 + 4^2)^{1/2} = 4.04$ kg mm.

The out of balance force $F = 4.04 \times 10^{-3} \times 209.4^2 = 177.1 \text{ N}$

The force on bearing A is 177.1 - 78.4 = 98.7 N in the same direction.

angle shown with forces vertical

(ii) Take B as the reference plane

Plane	Mass	Radius	х	Mr	Mrx			
В	M _B	60	0	60M _B	0			
С	0.1	25	50	2.5	125			
D	0.08	40	150	3.2	480			
Е	0.06	50	200	3.0	600			
F	$M_{\rm F}$	60	250	$60M_{\rm F}$	15000 M _F			
Draw the MRx vector diagram.								

For complete balance R must be the MRx value for the mass on disk F.

 $R = (239.6^2 + 425^2)^{1/2} = 487.9 \text{ kg mm}^2 \qquad \theta = \tan^{-1}(239.6/425) = 29.4^{\circ}$

It follows that for complete balance 15000 $M_F = 487.9 \text{ kg mm}^2$ $M_F = 487.9/15000 = 0.0325 \text{ kg}$

Now draw the MR vectors. Evaluate 60 $M_F = 1.952$

 $R = (1.53^2 + 0.845^2)^{1/2} = 1.75 \text{ kg mm}$ This represents the disc B so 60 M_B = 1.75 kg mm

 $M_{\rm B} = 0.0292 \text{ kg}$

The angle for mass B is $\tan^{-1} (1.53/0.845) = 61^{\circ}$ left of vertical down.

