DYNAMICS OF MECHANICAL SYSTEMS 462

Q1 2000
A children's playground is to be surfaced with a shock absorbent material to reduce the risk of head injury in the event of a child falling from a height. The material can be considered to act as a linear spring of stiffness $3000 / \mathrm{t} \mathrm{N} / \mathrm{m}$ when impacted by a head. T is the thickness of the layer in metres. Serious injury is likely to occur when the head experiences a deceleration in excess of $500 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the minimum thickness of the layer when a child falls a height of 2 m .
Data - Head Mass 5 kg
No energy loss in the impact.
No influence from the child's body.
Neglect the deflection of the layer in your calculations.

SOLUTION

Potential Energy $=$ M g z $=5 \times 9.81 \times 2=98.1$ Joules
Strain Energy when material is fully deflected $\mathrm{U}=\mathrm{Fy} / 2=\mathrm{ky}^{2} / 2$
Force F = M a = 5 x $500=2500 \mathrm{~N}$
Substitute U = 500y/2 = 250y
Equate PE = U $98.1=250 \mathrm{y} \quad \mathrm{y}=0.3824 \mathrm{~m}$
$\mathrm{F} / \mathrm{y}=\mathrm{k}=3000 / \mathrm{t}$
$2500 / 0.384=3000 / \mathrm{t} \quad \mathrm{t}=0.46 \mathrm{~m}$

This seems too simple ????

