The diagram shows a rocket propelled vehicle. Fluid is ejected from the nozzle at a rate of $\mathrm{dm}_{f} / \mathrm{dt}$ with a velocity of v_{f} relative to the vehicle.
(a) Show from first principles that the thrust produced is $\mathrm{F}=\mathrm{v}_{\mathrm{f}} \mathrm{dm}_{f} / \mathrm{dt}$
(b) Show that the speed reached after T seconds is $v=v_{f} \ln \left(m_{0} / m\right)$ where mo is the initial mass of the vehicle and propellant and m is the final mass of the vehicle and propellant.
(c) The vehicle is propelled by ejecting water at a velocity of $100 \mathrm{~m} / \mathrm{s}$ relative to the vehicle. The initial mass of the vehicle is 100 kg not including the water. Calculate the mass of water needed to make the vehicle reach a speed of $30 \mathrm{~m} / \mathrm{s}$ if all of it must be used up.
 Neglect any other forces opposing motion.

SOLUTION

(a) Newton's $2^{\text {nd }}$ Law \quad Impulse $=$ rate of change of momentum.
$\mathrm{F} \delta \mathrm{t}=\delta(\mathrm{mv}) \quad \mathrm{F}=\delta(\mathrm{mv}) / \delta \mathrm{t}$
Applied relative to the vehicle v is the constant velocity of the fuel $\left(v_{f}\right)$ so F is the force produced by the fuel and $F=v_{f} \mathrm{dm}_{\mathrm{f}} / \mathrm{dt}$. The vehicle is propelled by reaction to this force.
(b) $\mathrm{F}=\mathrm{v}_{\mathrm{f}} \frac{\mathrm{dm}_{\mathrm{f}}}{\mathrm{dt}}$ and this accelerates the vehicle by the law $\mathrm{F}=\mathrm{m}$ a ' m ' is mass of vehicle and ' a ' is the acceleration. The mass of the vehicle reduces with time so $\mathrm{m}=\mathrm{m}_{\mathrm{o}}-\int_{0}^{\mathrm{t}} \frac{\mathrm{dm}_{\mathrm{f}}}{\mathrm{dt}} \mathrm{dt}$
$F=\left[m_{o}-\int_{0}^{t} \frac{d m_{f}}{d t} d t\right] a=\left[m_{o}-\int_{0}^{t} \dot{m} d t\right] a=\left[m_{o}-\dot{m} t\right] a$
$\mathrm{F}=\left[\mathrm{m}_{\mathrm{o}}-\dot{\mathrm{m}} \mathrm{t}\right] \mathrm{a}=\mathrm{v}_{\mathrm{f}} \frac{\mathrm{dm}_{\mathrm{f}}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{f}} \dot{\mathrm{m}} \quad \mathrm{a}=\frac{\mathrm{v}_{\mathrm{f}} \dot{\mathrm{m}}}{\mathrm{m}_{\mathrm{o}}-\dot{\mathrm{m}} \mathrm{t}}$
This gives the acceleration of the vehicle at any time t when the propellant is ejected at a rate of \dot{m}. The velocity attained by the vehicle is found as follows.
$\mathrm{v}=\int_{0}^{\mathrm{T}} \mathrm{adt}=\int_{0}^{\mathrm{T}} \frac{\mathrm{v}_{\mathrm{f}} \dot{\mathrm{m}}}{\mathrm{m}_{\mathrm{o}}-\dot{\mathrm{m}} \mathrm{t}} \mathrm{dt}=\mathrm{v}_{\mathrm{f}} \dot{\mathrm{m}} \int_{0}^{\mathrm{T}} \frac{\mathrm{dt}}{\mathrm{m}_{\mathrm{o}}-\dot{\mathrm{m}} \mathrm{t}}$
let $\mathrm{x}=\mathrm{m}_{\mathrm{o}}-\dot{\mathrm{m}} \mathrm{t} \quad \mathrm{dx}=-\dot{\mathrm{m}} \mathrm{dt} \quad \mathrm{dt}=\frac{-\mathrm{dx}}{\dot{\mathrm{m}}}$
$\mathrm{v}=\mathrm{v}_{\mathrm{f}} \dot{\mathrm{m}} \int_{0}^{\mathrm{T}} \frac{-\mathrm{dx}}{\dot{\mathrm{m}} \mathrm{x}}=\mathrm{v}_{\mathrm{f}}[-\ln \mathrm{x}]_{0}^{\mathrm{T}} \quad \mathrm{v}=\mathrm{v}_{\mathrm{f}}\left[-\ln \left(\mathrm{m}_{\mathrm{o}}-\dot{\mathrm{m}} \mathrm{t}\right)\right]_{0}^{\mathrm{T}}$
$\mathrm{v}=\dot{\mathrm{m}}\left[-\ln \left\{\frac{\mathrm{m}_{\mathrm{o}}-\dot{\mathrm{m}} \mathrm{T}}{\mathrm{m}_{\mathrm{o}}}\right\}\right]=\dot{\mathrm{m}}\left[\ln \left\{\frac{\mathrm{m}_{\mathrm{o}}}{\mathrm{m}_{\mathrm{o}}-\dot{\mathrm{m}} \mathrm{T}}\right\}\right]$
The final mass of the vehicle is $\mathrm{m}=\mathrm{mo}-\dot{\mathrm{m}} \mathrm{T} \mathrm{v}=\mathrm{v}_{\mathrm{f}}\left[\ln \left\{\frac{\mathrm{m}_{\mathrm{o}}}{\mathrm{m}}\right\}\right]$
(c) $\mathrm{m}_{\mathrm{o}}=100+\mathrm{m}_{\mathrm{w}} \mathrm{m}=100 \mathrm{~kg}$ if all the water is used up. $\mathrm{m}_{\mathrm{w}}=$ initial mass of water. $\mathrm{v}_{\mathrm{f}}=100 \mathrm{~m} / \mathrm{s}$
$30=100\left[\ln \left\{\frac{100+\mathrm{m}_{\mathrm{w}}}{100}\right\}\right] \quad \mathrm{e}^{0.3}=\frac{100+\mathrm{m}_{\mathrm{w}}}{100}=1.35$
$135=100+\mathrm{m}_{\mathrm{w}} \quad \mathrm{m}_{\mathrm{w}}=35 \mathrm{~kg}$

