A 10 kg disc is mounted at the centre of a shaft 1.5 m long as shown.
Data $\mathrm{E}=209 \mathrm{GPa} \mathrm{I}=2.68 \times 10^{-7} \mathrm{~m}^{4} \mathrm{M}=10 \mathrm{~kg} \mathrm{~L}=1.5 \mathrm{~m} \delta=$ damping ratio
The log decrement for free transverse damped vibration is 0.628 .
The deflection at the middle for a point load F is $\mathrm{y}=\mathrm{FL}^{3} / 48 \mathrm{EI}$
(a) Show that the damping ratio δ is 0.1
(b) Determine the critical speed of the rotor.
(c) Calculate the amplitude of vibration at the middle if the centre of gravity is 1 mm from the centre and the shaft is revolved at $300 \mathrm{rev} / \mathrm{min}$.

For a shaft with a point load at the middle the natural frequency of transverse vibrations are

$$
\omega_{\mathrm{n}}=\sqrt{\frac{48 \mathrm{EI}}{\mathrm{ML}^{3}}}=\sqrt{\frac{48 \times 209 \times 10^{9} \times 2.68 \times 10^{-7}}{10 \times 1.5^{3}}}=282.244 \mathrm{rad} / \mathrm{s}
$$

Derivation $\omega_{\mathrm{n}}=(\mathrm{k} / \mathrm{M})^{1 / 2}$ for a simple spring mass system.
Given the deflection at the middle $\mathrm{y}=\mathrm{FL}^{3} / 48 \mathrm{EI}$ stiffness $\mathrm{k}=\mathrm{F} / \mathrm{y}=48 \mathrm{EI} / \mathrm{L}^{3}$
$\omega_{\mathrm{n}}=(\mathrm{k} / \mathrm{M})^{1 / 2}=\left(48 \mathrm{EI} / \mathrm{ML}^{3}\right)^{1 / 2}$
\log decrement is $\ln \left(x_{1} / x_{2}\right)=0.628$
$\ln \left(\frac{x_{1}}{x_{2}}\right)=0.628=\frac{2 \pi \delta}{\sqrt{1-\delta^{2}}}$
$0.1=\frac{\delta}{\sqrt{1-\delta^{2}}} \quad 0.01=\frac{\delta^{2}}{1-\delta^{2}}$
$0.01-0.01 \delta^{2}=\delta^{2} \quad 0.01=1.01 \delta^{2} \quad \delta^{2}=0.00990099 \quad \delta=0.0995$ round off 0.1
(b) The critical speed of the rotor corresponds to the damped resonant frequency of vibration.
$\omega_{\mathrm{r}}=\omega_{\mathrm{n}}\left(1-\delta^{2}\right)^{1 / 2}=282.244\left(1-0.1^{2}\right)^{1 / 2}=280.83 \mathrm{rad} / \mathrm{s}$
Convert to rev/s and $\mathrm{N}_{\mathrm{r}}=(280.83 / 2 \pi)=44.695 \mathrm{rev} / \mathrm{s}$ or $2681.7 \mathrm{rev} / \mathrm{min}$
(c) $\mathrm{N}=3000 \mathrm{rev} / \mathrm{min} \omega=2 \pi \mathrm{~N} / 60==314.16 \mathrm{rad} / \mathrm{s}$ eccentricity $\mathrm{e}=1 \mathrm{~mm}$

For a whirling shaft with no damping, the displacement is x given by
$x=\frac{e}{\left(\frac{\omega_{\mathrm{r}}}{\omega}\right)^{2}-1}=\frac{1}{\left(\frac{280.83}{314.16}\right)^{2}-1}=-5 \mathrm{~mm}$
Note the precise answer depends very much on how much rounding off is done and on a computer the answer is 9.84 mm

Using the formula given
$\mathrm{x}=\frac{\mathrm{F} / \mathrm{k}}{\sqrt{\left(1-\mathrm{r}^{2}\right)^{2}+(2 \delta \mathrm{r})^{2}}} \cos (\omega \mathrm{t}+\theta)$
This is a maximum when $\cos (\omega \mathrm{t}+\phi)=1$ and further the force is the centrifugal force.
$\mathrm{F}=\mathrm{M} \omega^{2}(\mathrm{x}+\mathrm{e}) \quad \mathrm{x}+\mathrm{e}$ is the radius to the centre of gravity.
$\mathrm{F} / \mathrm{k}=(\mathrm{M} / \mathrm{k}) \omega^{2}(\mathrm{x}+\mathrm{e})$
Since $k / M=\omega_{n}^{2}$ then $F / k=r^{2}(x+e)$
$x=\frac{r^{2}(x+e)}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \delta r)^{2}}}$
Let $\mathrm{p}=\frac{\mathrm{r}^{2}}{\sqrt{\left(1-\mathrm{r}^{2}\right)^{2}+(2 \delta \mathrm{r})^{2}}}$
$x=p(x+e) \quad x(1-p)=p e x=\frac{p e}{1-p}$ This gives an answer of $2.45 m m$
Evaluating with $\mathrm{D}=0$ we get 1.24 mm and this should agree with the first answer .. something wrong but I cant spot it.

