The original question clearly expects the use of vector mathematics to find the answers. I have used a graphical method. The link OA is 102 mm long. OP is 254 mm and PB is 450 mm . OA has an angular velocity of $12 \mathrm{krad} / \mathrm{s}$ and acceleration $4 \mathrm{krad} / \mathrm{s}$. (The k indicates a unit vector normal to the paper so the tangential direction is positive anticlockwise)
(a) Show that the angular velocity of link 4 is $4 \mathrm{krad} / \mathrm{s}$.
(b) Show that the velocity of A on 4 is $0.820 .82 \mathrm{n}_{4} \mathrm{~m} / \mathrm{s} . \mathrm{n}_{4}$ is a unit vector in direction of PB.
(c) Determine the angular velocity of link 4.
(d) Determine the acceleration of point B.

ACCELCRATION DIAGRAM
CCNTRIPETAL
A to P

$$
\begin{aligned}
a_{R 4} & =\omega^{2} \times P A=2.778^{2} \times \cdot 318 \\
& =2.454 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

TANGGNTIAL A P UnkNown

$$
\begin{aligned}
\text { CORIOLIS A to } P=2 \omega V & =2 \times 2.778 \times 0.8472 \\
& =4.707 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

COUTRIPGTAL A to $0=\omega^{2} \times A 0$

$$
\begin{aligned}
& =\omega^{2} \times 10 \\
& =12^{2} \times \cdot 102=14.688 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\text { TANGENTIAL } A \text { To } 0=\alpha \times A 0=4 \times 102=.408 \mathrm{~m} / \mathrm{s}^{2}
$$

ALso UNKNoun acen of lirk on 4

(c)

TANGENTIAZ ACC' of ' A ' $=5.6 \mathrm{~m} / \mathrm{s}^{2}$

$$
\alpha \text { LINE } 4=5.6 \div P A=5.6 / .318=17.61 \mathrm{rd} / \mathrm{s}^{2}
$$

(d) ACCCCEPATION of B

$$
\begin{aligned}
& \text { CONT. ACC }=\omega^{2} \times P B=2.778^{2} \times .45=3.472 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { TANG ACC }=\alpha \times P B=17.61 \times .45=7.924 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { TRUE ACC }=8.6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

