GYROSCOPE

A motor has a mass of 10 kg and is mounted on a platform as shown. The rotor has a mass of 2.5 kg and turns at $1750 \mathrm{rev} / \mathrm{min}$ anticlockwise viewed from the back. The radius of gyration is 45 mm . The platform is rotated at $50 \mathrm{rev} / \mathrm{min}$ anticlockwise viewed from above. Calculate the reactions at the motor mounts A and B.

Viewed from above the change in angular momentum is as shown. This means a reaction torque will be produced about the x axis. The magnitude is $\mathrm{T}=\mathrm{I} \omega_{\mathrm{z}} \omega_{\mathrm{y}}$

$\mathrm{I}=\mathrm{m} \mathrm{k}^{2}=2.5 \times 0.045^{2}=5.062 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2}$
$\omega_{\mathrm{z}}=2 \pi \mathrm{~N}_{\mathrm{z}} / 60=2 \pi \times 1750 / 60=183.26 \mathrm{rad} / \mathrm{s}$
$\omega_{\mathrm{y}}=2 \pi \mathrm{~N}_{\mathrm{y}} / 60=2 \pi \times 50 / 60=5.236 \mathrm{rad} / \mathrm{s}$
Gyroscopic torque $=\mathrm{T}=5.062 \times 10^{-3} \times 183.26 \times 5.236=4.858 \mathrm{~N} \mathrm{~m}$
Assume this is a force F acting at the centre of gravity. $\mathrm{F}=\mathrm{T} / 0.18=26.987 \mathrm{~N}$
The reaction torque is the opposite vector to the change shown on diagram so it exerts an upwards force.
Weight of motor $=\mathrm{Mg}=10 \mathrm{~g}=98.1 \mathrm{~N}$ and this is down (minus).
Forces acting on the motor in vertical direction are $\mathrm{F}, \mathrm{F}_{\mathrm{A}} \mathrm{F}_{\mathrm{B}}$ and the weight Mg must all add up to zero.

$$
\begin{gathered}
26.87+\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{B}}-98.1=0 \\
\mathrm{~F}_{\mathrm{A}}=71.23-\mathrm{F}_{\mathrm{B}}
\end{gathered}
$$

Moments about any point must add to zero so about the centre of the platform we have

$$
\begin{aligned}
& (\mathrm{F} \times 0.18)-(\mathrm{W} \times 0.18)+\left(\mathrm{F}_{\mathrm{A}} \times 0.3\right)+\left(\mathrm{F}_{\mathrm{B}} \times 0.06\right)=0 \\
& (26.987 \times 0.18)-(\mathrm{W} \times 0.18)+\left(\mathrm{F}_{\mathrm{A}} \times 0.3\right)+\left(\mathrm{F}_{\mathrm{B}} \times 0.06\right)=0 \\
& (26.987 \times 0.18)-(98.1 \times 0.18)+\left(\mathrm{F}_{\mathrm{A}} \times 0.3\right)+\left(\mathrm{F}_{\mathrm{B}} \times 0.06\right)=0 \\
& \left(\mathrm{~F}_{\mathrm{A}} \times 0.3\right)+\left(\mathrm{F}_{\mathrm{B}} \times 0.06\right)=12.8 \\
& \left\{\left(71.23-\mathrm{F}_{\mathrm{B}}\right) \times 0.3\right\}+\left(\mathrm{F}_{\mathrm{B}} \times 0.06\right)=12.8 \\
& 21.369-0.3 \mathrm{~F}_{\mathrm{B}}+0.06 \mathrm{~F}_{\mathrm{B}}=12.8 \\
& 8.569=0.24 \mathrm{~F}_{\mathrm{B}} \\
& \mathrm{~F}_{\mathrm{B}}=35.70 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{A}}=71.23-35.70=35.5 \mathrm{~N}
\end{aligned}
$$

