D25 1999 Q3

EPICYCLIC GEAR BOX

- (a) The ring C is held stationary and A rotated at 200 rev/min. Calculate the speed of shaft B.
- (b) The input A transmits 5 kW at 200 rev/min. Assuming no friction in the transmission, find the torque on C to hold it stationary.
- (c) C is now rotated at 100 rev/min in the same direction as A which continues to rotate at 200rev/min. Determine the output speed of B.

(a) With C stationary it not an epicyclic gear box but a simple gear train.

А	D	В	Ĉ
1	-64/28	-64/120	0

Gear Ratio B/A = -64/120

Speed of A = 200 rev/min Speed of B = $200 \times 64/120 = 106.67$ rev/min in opposite direction.

- (b) Input power = 5 kW = $2\pi N_A T_A/60$ $T_A = (5000 \times 60)/(2\pi \times 200) = 238.7$ Nm ACW Output Power = Input Power (no friction) $T_B = (5000 \times 60)/(2\pi \times 106.67) = 447.6$ Nm CW The torque on the case = T_C $T_A + T_B + T_C = 0$ 238.7 - 447.6 + $T_C = 0$ $T_C = 208.9$ Nm (ACW)
- (c) The gear box is now epicyclic.

	А	D	В	С
Keep C stationary give B 1 rev	-120/64	120/28	1	0
Multiply by x (revs of B)	-120x/64	120x/28	Х	0
Lock the gears and rotate all y times	(-120x/64)+ y	(120x/28)+ y	$\mathbf{x} + \mathbf{y}$	У

Speed of C = y = 100 rev/min Speed of A = (-120x/64)+ y = 200 -120x/64 + 100 = 200 x = -53.33 rev/min

Speed of B is -53.33 rev/min. (opposite direction)