EPICYCLIC GEAR BOX

(a) The ring C is held stationary and A rotated at $200 \mathrm{rev} / \mathrm{min}$. Calculate the speed of shaft B.
(b) The input A transmits 5 kW at $200 \mathrm{rev} / \mathrm{min}$. Assuming no friction in the transmission, find the torque on C to hold it stationary.
(c) C is now rotated at $100 \mathrm{rev} / \mathrm{min}$ in the same direction as A which continues to rotate at $200 \mathrm{rev} / \mathrm{min}$. Determine the output speed of B.

(a) With C stationary it not an epicyclic gear box but a simple gear train.

A	D	B	C
1	$-64 / 28$	$-64 / 120$	0

Gear Ratio B/A = -64/120
Speed of A $=200 \mathrm{rev} / \mathrm{min}$ Speed of $B=200 \times 64 / 120=106.67 \mathrm{rev} / \mathrm{min}$ in opposite direction.
(b) Input power $=5 \mathrm{~kW}=2 \pi \mathrm{~N}_{\mathrm{A}} \mathrm{T}_{\mathrm{A}} / 60 \quad \mathrm{~T}_{\mathrm{A}}=(5000 \times 60) /(2 \pi \times 200)=238.7 \mathrm{Nm} \mathrm{ACW}$

Output Power $=$ Input Power (no friction)
$\mathrm{T}_{\mathrm{B}}=(5000 \times 60) /(2 \pi \times 106.67)=447.6 \mathrm{Nm} \mathrm{CW}$
The torque on the case $=\mathrm{T}_{\mathrm{C}}$
$\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}+\mathrm{T}_{\mathrm{C}}=0 \quad 238.7-447.6+\mathrm{T}_{\mathrm{C}}=0 \mathrm{~T}_{\mathrm{C}}=208.9 \mathrm{Nm}(\mathrm{ACW})$
(c) The gear box is now epicyclic.

	A	D	B	C
Keep C stationary give B 1 rev	$-120 / 64$	$120 / 28$	1	0
Multiply by x (revs of B)	$-120 x / 64$	$120 \mathrm{x} / 28$	x	0
Lock the gears and rotate all y times	$(-120 \mathrm{x} / 64)+\mathrm{y}$	$(120 \mathrm{x} / 28)+\mathrm{y}$	$\mathrm{x}+\mathrm{y}$	y

Speed of C = y = $100 \mathrm{rev} / \mathrm{min}$
Speed of $A=(-120 x / 64)+y=200 \quad-120 x / 64+100=200 \quad x=-53.33 \mathrm{rev} / \mathrm{min}$
Speed of B is -53.33 rev/min. (opposite direction)

