DYNAMICS OF MECHANICAL SYSTEMS SOLUTIONS Q1 1999

A machine of mass 70 kg is mounted on springs of stiffness 1 MN/m and dampers with a damping ratio of 0.2. A piston on the machine has a mass of 1.8 kg and reciprocates up and down harmonically with a stroke of 75 mm and speed of 3000 rev/min.

Calculate

(i) the amplitude of vibration for the machine.

- (ii) the phase angle of the motion with respect to the exciting force.
- (iii) the force transmitted to the foundations.
- (iv) the phase angle of the transmitted force with respect to the exciting force.

SOLUTION

Data M = 70 kg k =
$$10^6$$
 N/m m = 1.8 kg $\xi = 0.2$

Amplitude of motion a = 75/2 = 37.5 mm Speed = 3000 rev/min $\omega = 2\pi N/60 = 314.159 \text{ rad/s}$ Natural Frequency of System $\omega n = \sqrt{(k/M)} = 119.523 \text{ rad/s}$

Motion is
$$x = A_1 \cos(\omega t)$$
 vel =- $A_1 \omega \sin(\omega t)$ acc = $-A_1 \omega^2 \cos(\omega t) = -\omega^2 x$
Inertia Force = m acc = -m $\omega^2 x$
Fo = m $A_1 \omega^2 = 6.662 \text{ kN}$
Check Fo := m $\omega^2 \cdot A_1$ Fo = $6.662 \cdot 10^3$
 $A := \frac{\text{Fo}}{M} \cdot \sqrt{\frac{1}{(\omega n^2 - \omega^2)^2 + (2 \cdot \zeta \cdot \omega \cdot \omega n)^2}}$
A = amplitude of machine = 1.11 mm
 $\phi := \operatorname{atan}\left(\frac{2 \cdot \zeta \cdot \omega \cdot \omega n}{\omega n^2 - \omega^2}\right)$
 ϕ = phase angle w.r.t. disturbing force = - 10.09 degrees
Cc = critical damping coefficient Cc = $\sqrt{(4 \text{ M k})} = 16730 \text{ Nm/s}$
c = actual damping coefficient c = ξ Cc = 3 347 Ns/m
Fs = spring force = k A = 1.11 kN
Fd = damping force = c A ω = 1.167 kN
FT = Transmitted force = $\sqrt{(Fs^2 + Fd^2)} = 1.611 \text{ kN}$
 ϕ T = phase angle = $\phi \cdot \tan^{-1}(Fd/Fs) = -56.52$ degrees
Check with formulae given in question r = $\omega/\omega n$
 $A := \frac{Fo}{k}$

