Q7a
Show that the following system of linear equations does not possess a unique solution, and find a parametric means of describing the family of solutions.
$5 x_{1}+8 x_{2}-5 x_{3}=2$
$4 \mathrm{x}_{1}+5 \mathrm{x}_{2}-3 \mathrm{x}_{3}=0$
$3 x_{1}+2 x_{2}-x_{3}=-2$

SOLUTION

In matrix form we have

$$
\left[\begin{array}{lll}
5 & 8 & -5 \\
4 & 5 & -3 \\
3 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right]
$$

If the determinant of the coefficient matrix is zero there is no unique solution. Find the determinant.
Find the minors

$$
\begin{aligned}
& \mathrm{M}_{11}=\left[\begin{array}{ll}
5 & -3 \\
2 & -1
\end{array}\right]=(5)(-1)-(-3)(2)=-5+6=1 \\
& \mathrm{M}_{12}=\left[\begin{array}{ll}
4 & -3 \\
3 & -1
\end{array}\right]=(4)(-1)-(-3)(3)=-4+9=5 \\
& \mathrm{M}_{13}=\left[\begin{array}{ll}
4 & 5 \\
3 & 2
\end{array}\right]=(4)(2)-(5)(3)=8-15=-7
\end{aligned}
$$

The cofactors go +-+ so
$\mathrm{A}_{11}=1 \quad \mathrm{~A}_{12}=-5 \quad \mathrm{~A}_{13}=-7$
From the matrix $a_{11}=5 \quad a_{12}=8 \quad a_{13}=-5$
The determinant is $\mathrm{a}_{11} \mathrm{~A}_{11}+\mathrm{a}_{12} \mathrm{~A}_{12}+\mathrm{a}_{13} \mathrm{~A}_{13}=(5)(1)+(8)(-5)+(-5)(-7)=5-40+35=0$
The determinant is zero so there is no unique solution.

Q7b

Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

For each eigenvalue find a suitable eigenvector and show that the three vectors are mutually perpendicular.

SOLUTION

$$
A-\lambda I=A-\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{lll}
1-\lambda & 0 & 2 \\
0 & 2-\lambda & 0 \\
2 & 0 & 1-\lambda
\end{array}\right]
$$

We must find the determinant of this matrix.
Find the minors

$$
\begin{aligned}
& \mathrm{M}_{11}=\left[\begin{array}{ll}
2-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right]=(2-\lambda)(1-\lambda)-(0)(0)=2-3 \lambda+\lambda^{2} \\
& \mathrm{M}_{12}=\left[\begin{array}{ll}
0 & 0 \\
2 & 1-\lambda
\end{array}\right]=(0)(1-\lambda)-(0)(2)=0 \\
& \mathrm{M}_{13}=\left[\begin{array}{ll}
0 & 2-\lambda \\
2 & 0
\end{array}\right]=(0)(0)-(2-\lambda)(2)=-4+2 \lambda
\end{aligned}
$$

The cofactors go + - + so
$\mathrm{A}_{11}=2-3 \lambda+\lambda^{2} \quad \mathrm{~A}_{12}=0 \quad \mathrm{~A}_{13}=-4+2 \lambda$
From the matrix $a_{11}=1-\lambda \quad a_{12}=0 \quad a_{13}=2$
The determinant is $\mathrm{a}_{11} \mathrm{~A}_{11}+\mathrm{a}_{12} \mathrm{~A}_{12}+\mathrm{a}_{13} \mathrm{~A}_{13}=(1-\lambda)\left(2-3 \lambda+\lambda^{2}\right)+0+2(-4+2 \lambda)$
$0=-\lambda^{3}+4 \lambda^{2}-\lambda-6$
$0=\lambda^{3}-4 \lambda^{2}+\lambda+6$
$0=(\lambda-2)(\lambda+1)(\lambda-3)$ The eigenvalues are $2,-1$ and 3
Find the eigenvectors
$(A-\lambda I) X=0$ where X is the eigenvector matrix.
First find the eigenvector for $\lambda=2$
$A-\lambda I=\left[\begin{array}{lll}1-\lambda & 0 & 2 \\ 0 & 2-\lambda & 0 \\ 2 & 0 & 1-\lambda\end{array}\right]=\left[\begin{array}{lll}1-2 & 0 & 2 \\ 0 & 2-2 & 0 \\ 2 & 0 & 1-2\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & -1\end{array}\right]$
$(A-\lambda \mid) X=0=\left[\begin{array}{ccc}-1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & -2\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
We are solving three simultaneous equations. One possible solution is $\mathrm{a}=\mathrm{b}=\mathrm{b}=0$ but an eigenvector cannot be the zero vector.
The other two non zero equations indicate $b=0$ and $-a+2 c=0$ and $2 \mathrm{a}-\mathrm{c}=0$
The only vector that makes sense is for $\mathrm{a}=\mathrm{c}=0$ and b to have any value so the vector is:
$(0, b, 0)$ or $\alpha(0,1,0)$ where α is any scalar value.

Next find the eigenvector for $\lambda=-1$

$$
(A-\lambda \mid) X=0=\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Again, one possible solution is $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$ but an eigenvector cannot be the zero vector. The only vector that makes sense is for $\mathrm{a}=-\mathrm{c}$ and $\mathrm{b}=0$
The eigenvector is $(a, 0,-a)$ or $\beta(1,0,-1)$ where β is any scalar value.
Next find the eigenvector for $\lambda=3$

$$
(A-\lambda)\rangle=0=\left[\begin{array}{rrr}
-2 & 0 & 2 \\
0 & -1 & 0 \\
2 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Again, one possible solution is $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$ but an eigenvector cannot be the zero vector. The only vector that makes sense is for $a=c$ and $b=0$
The eigenvector is (a, $0, \mathrm{a}$) or $\gamma(1,0,1)$ where γ is any scalar value.

The three eigenvectors in Cartesian form are $(0, y, 0),(x, 0,-z)$ and $(x, 0, z)$. These are all at 90° to each other which cab be seen when sketched.

