Q6
(a) An electric charge q_{1} is moving with velocity v_{1}, produces a magnetic induction given by:

$$
B=\alpha q_{1} \frac{v_{1} \times r}{r^{2}}
$$

Where α is a constant and r is the position vector of the charge. The magnetic force exerted on a second charge q_{2} moving with velocity v_{2} is given by:

$$
\mathrm{F}=\mathrm{q}_{2} \mathrm{v}_{2} \times B
$$

Find F if $v_{1}=i+j-k, v_{2}=3 i+2 j, r=2 i-j+3 k$ and $q_{1}=q_{2}=1$
(b) With respect to a fixed origin O the lines ℓ_{1} and ℓ_{2} are given by

$$
\ell_{1}: \mathrm{r}_{1}=\mathrm{i}+\mathrm{j}+\lambda(-6 \mathrm{i}+8 \mathrm{k}) ; \mathfrak{k}_{2}: \mathrm{r}_{2}=-2 \mathrm{i}+\mathrm{j}+4 \mathrm{k}+\mu(\mathrm{i}+2 \mathrm{j}-4 \mathrm{k}) ;
$$

Where λ and μ are scalar parameters. Find the point of intersection of the lines and the acute angle between their directions.

SOLUTION

(a) First find B

The cross product $\mathrm{v}_{1} \times r$ is the determinant of the matrix shown

$$
\underline{\mathbf{A}} \times \underline{\mathbf{B}}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\mathrm{a}_{1} & a_{2} & a_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}
\end{array}\right|
$$

$\mathrm{v}_{1}=\mathrm{i}+\mathrm{j}-\mathrm{k}$,
$r=2 i-j+3 k$
$\mathbf{v}_{1} \times \mathbf{r}=\mathrm{i}\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{a}_{3} \mathrm{~b}_{2}\right)+\mathrm{j}\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{3}\right)+\mathrm{k}\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)$
$\mathbf{v}_{\mathbf{1}} \times \mathbf{r}=\mathrm{i}\{(1)(3)-(-1)(-1)\}+\mathrm{j}\{(-1)(-2)-(1)(3)\}+\mathrm{k}\{(1)(-1)-(1)(2)\}$
$\mathbf{v}_{\mathbf{1}} \times \mathbf{r}=2 \mathrm{i}-5 \mathrm{j}-3 \mathrm{k}$
using Pythagoras find $r^{2}=(2)^{2}+(-1)^{2}+(3)^{2}=14$
$\left.\mathrm{B}=\alpha \mathrm{q}_{1} \frac{\mathrm{v}_{1} \mathrm{xr}}{\mathrm{r}^{2}}=\frac{\alpha(1)}{14}(2 i-5 j-3 k)\right)$
Now find $F=q_{2} V_{2} \times B$
The cross product $\mathrm{V}_{2} \times B$ is the determinant of the matrix.
$\mathrm{v}_{2}=3 \mathrm{i}+2 \mathrm{j}$,
B $=(\alpha / 14)(2 \mathrm{i}-5 \mathrm{j}-3 \mathrm{k})$
$\mathbf{V}_{\mathbf{2}} \times \mathbf{B}=(\alpha / 14)\left[i\left(a_{2} b_{3}-a_{3} b_{2}\right)+j\left(a_{3} b_{1}-a_{1} b_{3}\right)+k\left(a_{1} b_{2}-a_{2} b_{1}\right)\right]$
$\mathbf{V}_{\mathbf{2}} \times \mathbf{B}=(\alpha / 14)[\{\mathrm{i}(2)(-3)-(0)(-5)\}+\mathrm{j}\{(0)(2)-(3)(-3)\}+\mathrm{k}\{(3)(-5)-(2)(2)\}]$
$\mathbf{V}_{\mathbf{2}} \times \mathbf{B}=(\alpha / 14)[-6 \mathrm{i}+9 \mathrm{j}-19 \mathrm{k}]$
$F=q_{2} v_{2} \times B=(1) \frac{\alpha}{14}(-6 i+9 j-19 k)$
(b) A line must have two sets of coordinates to define the ends but only one is given. If the line extends from the origin to the point given, then they must intersect at the origin. If anyone understands the question please let me know.

With no explanation of the meaning of terms like $\iota_{1}: r_{1} \mathrm{I}$ assume that ℓ is the length or magnitude and r is the coordinates of the tip.
$\mathrm{r}_{1}=\mathrm{i}+\mathrm{j}+\lambda(-6 \mathrm{i}+8 \mathrm{k})=\mathrm{i}+\mathrm{j}-6 \lambda \mathrm{i}+8 \lambda \mathrm{k}$
$r_{1}=i(1-6 \lambda)+j+k(8 \lambda)$
$\mathrm{r}_{1}=\mathrm{i}\left(\mathrm{a}_{1}\right)+\mathrm{j}\left(\mathrm{b}_{1}\right)+\mathrm{k}\left(\mathrm{c}_{1}\right)$
$\mathrm{r}_{2}=-2 \mathrm{i}+\mathrm{j}+4 \mathrm{k}+\mu(\mathrm{i}+2 \mathrm{j}-4 \mathrm{k})=-2 \mathrm{i}+\mathrm{j}+4 \mathrm{k}+\mu \mathrm{i}+2 \mu \mathrm{j}-4 \mu \mathrm{k}$
$\mathrm{r}_{2}=\mathrm{i}(\mu-2)+\mathrm{j}(1+2 \mu)+\mathrm{k}(4-4 \mu)$
$\mathrm{r}_{2}=\mathrm{i}\left(\mathrm{a}_{2}\right)+\mathrm{j}\left(\mathrm{b}_{2}\right)+\mathrm{k}\left(\mathrm{c}_{2}\right)$
First find the dot product.
$\underline{\mathbf{r}}_{\underline{1}} \bullet \underline{\mathbf{r}}_{\underline{2}}=\left(\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}\right)$
$\underline{\mathbf{r}}_{\underline{1}} \cdot \underline{\mathbf{r}_{2}}=(1-6 \lambda)(\mu-2)+(1)(1+2 \mu)+(8 \lambda)(4-4 \mu)$
The magnitudes are found from Pythagoras

$$
\begin{aligned}
& 4_{1}=\left\{(1-6 \lambda)^{2}+1^{2}+(8 \lambda)^{2}\right\}^{1 / 2} \\
& \boldsymbol{h}_{2}=\left\{(\mu-2)^{2}+(1+2 \mu)^{2}+(4-4 \mu)^{2}\right\}^{1 / 2}
\end{aligned}
$$

The angle between them is found from

$$
\underline{\mathbf{r}}_{\underline{1}} \bullet \underline{\mathbf{r}}_{\underline{2}}=\ell_{1} / 2 \cos \theta
$$

$\cos \theta=\left(\underline{\mathbf{r}_{1}} \bullet \underline{\mathbf{r}_{2}}\right) / 4 / 2$
$\cos \theta=\frac{(1-6 \lambda)(\mu-2)+(1+2 \mu)+(8 \lambda)(4-4 \mu)}{\left\{(1-6 \lambda)^{2}+1+(8 \lambda)^{2}\right\}^{\frac{1}{2}}+\left\{(\mu-2)^{2}+(1+2 \mu)^{2}+(4-4 \mu)^{2}\right\}^{\frac{1}{2}}}$
The angle obviously depends on the values of λ and μ.

