Q4a
A hole of diameter $\mathrm{D}=15 \mathrm{~cm}$ and height $\mathrm{H}=15 \mathrm{~cm}$ is to be cut in a block of metal. The cutting process has a maximum error of 0.002 cm in the diameter and 0.001 cm in the height. Use partial differentiation to determine the maximum error in the volume of the cavity.

SOLUTION

Volume $=$ area x height $=\pi \mathrm{D}^{2} / 4$ x $\mathrm{H} \quad \mathrm{V}=\pi \mathrm{D}^{2} \mathrm{H} / 4$
Partial differentiation first keep H constant $\frac{\partial V}{\partial D}=\frac{\pi D H}{2}$
Next keep D constant $\frac{\partial V}{\partial H}=\frac{\pi D^{2}}{4}$
Error in the volume is $\delta V=\frac{\partial V}{\partial D} \delta D+\frac{\partial V}{\partial H} \delta H=\frac{\pi D H}{2} \delta D+\frac{\pi D^{2} H}{2} \delta H$
$\delta \mathrm{V}=\frac{\pi \times 15 \times 10}{2} \times 0.002+\frac{\pi \times 15^{2} \times 10}{2} \times 0.001=0.648 \mathrm{~cm}^{3}$
The answer may be verified by calculating the volume with the minimum and then the maximum dimensions.
$\mathrm{V}_{1}=\pi \times 15^{2} \times 10 / 4=1767.146 \mathrm{~cm}^{3}$
$\mathrm{V}_{2}=\pi \times 15.001^{2} \times 10.002 / 4=1767.794 \mathrm{~cm}^{3}$
$\Delta \mathrm{V}=1767.794-1767.146=0.648 \mathrm{~cm}^{3}$

Q4(b)
The ideal gas law is $\mathrm{p} v=\mathrm{RT}$ where p is the pressure, v the specific volume, T the absolute Temperature and R the characteristic gas constant. By finding the differential dp derive a differential equation for an isobar (a curve of constant p)

SOLUTION

$\mathrm{p} v=\mathrm{RT}$ rearrange to $\mathrm{p}=\mathrm{RT} / v$ and partial differentiation yields:
$\frac{\partial p}{\partial v}=-\frac{R T}{v^{2}} \quad \frac{\partial p}{\partial T}=\frac{R}{v}$
$d p=\frac{\partial p}{\partial T} d T+\frac{\partial p}{\partial v} d v$
$d p=\frac{R}{v} d T-\frac{R T}{v^{2}} d v$
On an isobar $\mathrm{dp}=0$ everywhere so
$\frac{R}{v} d T=\frac{R T}{v^{2}} d v$
$\frac{d T}{T}=\frac{d v}{v}$

