Q3a. A thick cylinder has an internal radius r_{0} and external radius r_{1}. The radial compressive stress p at distance r from the axis of the cylinder is given by the differential equation

$$
r \frac{d p}{d r}=2(A-p) \text { where } \mathrm{A} \text { is a constant }
$$

Solve the equation if $\mathrm{p}=\mathrm{p}_{\mathrm{o}}$ at $\mathrm{r}=\mathrm{r}_{\mathrm{o}}$

SOLUTION

The variables are separable. $\frac{d p}{(A-p)}=\frac{2 d r}{r}$
We can make a substitution $(\mathrm{A}-\mathrm{p})=\mathrm{X}$
Differentiate $-\mathrm{dp}=\mathrm{dX}$ and substitute
$-\frac{d X}{X}=\frac{2 d r}{r}$
Now integrate $\quad-\ln (X)=2 \ln (r)+C$
Substitute back $\quad-\ln (A-p)=2 \ln (r)+C$
Boundary condition $\mathrm{p}=\mathrm{p}_{\mathrm{o}}$ at $\mathrm{r}=\mathrm{r}_{\mathrm{o}}$
$-\ln \left(A-p_{o}\right)=2 \ln \left(r_{o}\right)+C$
$C=-\frac{\ln \left(A-p_{o}\right)}{2 \ln \left(r_{o}\right)}$
The equation is now
$-\ln (A-p)=2 \ln (r)-\frac{\ln \left(A-p_{o}\right)}{2 \ln \left(r_{o}\right)}$
$\ln \left(\frac{1}{A-p}\right)=\ln \left(r^{2}\right)-\frac{\ln \left(A-p_{o}\right)}{\ln \left(r_{o}{ }^{2}\right)}$
Take anti-logs
$\frac{1}{A-p}=r^{2}-\operatorname{antilog}\left(\frac{\ln \left(A-p_{o}\right)}{\ln \left(r_{o}{ }^{2}\right)}\right)$
$\frac{1}{A-p}=r^{2}-K$
$A-p=\frac{1}{r^{2}-K}$
$p=A-\frac{1}{r^{2}-K}$
I have some doubt about this solution anyone able to offer a better one please contact freestudy.

Q3(b) A cylindrical tank is receiving and discharging water at the same time. Initially the tank is empty and at time t the depth is h . h and t are related by the equation

$$
\frac{d h}{d t}+k h=k h_{o} e^{-k t} \text { where } \mathrm{k} \text { and } \mathrm{h}_{0} \text { are constants }
$$

Find the depth oif water as a function of t and sketch the graph of h against t.

SOLUTION

Compare $\frac{d h}{d t}+k h=k h_{o} e^{-k t}$ and $\frac{d h}{d t}+h P(t)=Q(t)$
$P(t)=k \quad Q(t)=k h_{o} e^{-k t} \quad I F=e^{\int P(t) d t}=e^{\int k d t}=e^{k t}$
$h(t)=\frac{1}{e^{k t}} \int k h_{o} e^{-k t} e^{k d t} d t=\frac{1}{e^{k t}} \int k h_{o} e^{o} d t=e^{-k t} \int k h_{o} d t$
$h(t)=e^{-k t} k h_{o} t+C \quad$ When $\mathrm{t}=0, \mathrm{~h}=0 \quad 0=0+C \quad \mathrm{C}=0$
$h=e^{-k t} k h_{0} t$
The graph is typically as shown which does not make a lot of sense as it appears to fill and empty.

