ENGINEERING COUNCIL EXAM MATHEMATICS C101
 Solutions to exam paper 2004

Q2a. Estimate the value of the definite integral $I=\int_{1}^{5} x^{4} d x$ by Simpson's rule using four strips.
What is the error in the estimate? How many strips would be needed to guarantee that the estimate was correct to 3 decimal places?
(The error, e_{s}, in Simpson's rule using n strips applied to the integral $I=\int_{a}^{b} f(x) d x$ is given by $\left|e_{s}\right| \leq \frac{(b-a)^{5}}{180 n^{4}} M$ where M is the maximum value of $\left|f^{(4)}(x)\right|$ in the interval $\left.\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\right)$
The plot shown is not really required in the exam but is included here for tutorial purposes.

Evaluate y_{1} to $\mathrm{y}_{5} \quad \mathrm{y}_{1}=1^{4}=1 \quad \mathrm{y}_{2}=2^{4}=64 \quad \mathrm{y}_{3}=3^{4}=81 \quad \mathrm{y}_{4}=4^{4}=256 \quad \mathrm{y}_{5}=5^{4}=625$
It is easy to check the correct answer by integrating and evaluating $I=\int_{1}^{5} x^{4} d x=\left[\frac{x^{5}}{5}\right]_{1}^{5}=625$ Simpson's
Rule $I=\frac{h}{3}[($ first + last $)+4($ sum of the even ordinates $)+2($ sum of the remaining odd ordinates $)]$ $I=\frac{h}{3}\left[\left(y_{1}+y_{5}\right)+4\left(y_{2}+y_{4}\right)+2\left(y_{3}\right)\right]=\frac{1}{3}[(1+625)+4(64+256)+2(81)]=689.333$

Error $=689.333-625=64.333$
$\left|e_{s}\right| \leq \frac{(b-a)^{5}}{180 n^{4}} M$
$64.333 \leq \frac{(5-1)^{5}}{180 n^{4}} 625^{4}$ hence $\mathrm{n}^{4}=13.493 \times 10^{9} \quad \mathrm{n}=340.8$ so we need 342 strips to have an even number large enough.

Q2(b) Find the position of the centroid of the plane area bounded by the x - axis, the $\mathrm{y}-\mathrm{axis}$ and the curve $y=4-x^{2}, 0 \leq x \leq 2$. What is the position of the centroid of the plane area bounded by the x-axis and the curve $y=4-x^{2},-2 \leq x \leq 2$?

SOLUTION

The plot of $y=4-x^{2}$ is shown.

First find the area $A=\int_{0}^{2} y d x=\int_{0}^{2}\left(4-x^{2}\right) d x=\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2}=\left(8-\frac{8}{3}\right)-0=5.333$
Next find the moment of area about the x axis.
$M x=\int_{0}^{2} \frac{y^{2}}{2} d x=\int_{0}^{2} \frac{\left(4-x^{2}\right)^{2}}{2} d x=\int_{0}^{2} \frac{\left(16+x^{4}-8 x^{2}\right)}{2} d x=\left[\frac{16 x+\frac{x^{5}}{5}-\frac{8 x^{3}}{3}}{2}\right]_{0}^{2}$
$M x=\left[8 x+\frac{x^{5}}{10}-\frac{4 x^{3}}{3}\right]_{0}^{2}=(16+3.2-10.667)-0=8.533$
The position of the centroid from the x axis is $\mathrm{Mx} / \mathrm{A}=8.533 / 5.333=1.6$
Next find the moment of area about the y axis.
$M y=\int_{0}^{2} y x d x=\int_{0}^{2}\left(4-x^{2}\right) x d x=\int_{0}^{2}\left(4 x-x^{3}\right) d x=\left[2 x^{2}-\frac{x^{4}}{4}\right]_{0}^{2}$
$M y=(8-4)-0=4$
The position of the centroid from the y axis is
$\mathrm{My} / \mathrm{A}=4 / 5.333=0.75$

For the limits of -2 to +2 the centroid moves onto the y axis at $\mathrm{x}=0$ and $\mathrm{y}=1.6$

