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Q1a. The deflection y of a beam of length L at a distance x from the its left hand end is given by : 

( 22 xLαxy −= )  where α is a positive constant. 

Obtain 
dx
dy and 2

2

dx
yd , and hence obtain the maximum deflection of the beam. Find also where the 

points of inflection occur. 
 
SOLUTION 
Examining the equation  we see that y is zero when x = 0 and when x = L so it 
appears to be a simply supported beam. The deflection appears to be upwards but note in beam 
problems we usually have a minus in the equation to indicate downwards deflection. As we have an 
exact equation we do not need constants of integration. 
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For a maximum or minimum point 0=
dx
dy  

[ ]322 4620 xLxxL +−=  A possible value of x is zero 
Divide everything by x [ ]22 4620 xxLL +−=  and factorise ( )( )LxLx −−= 2220  
Other possible solutions are x = L and x = L/2. Now check if these are maximum or minimum 
values by checking if the second derivative is positive or negative at these points. 
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Put x = L/2   [ ] 2222
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xd αα −=+−=  This is negative so it is probably a maximum. 

At a maximum the gradient changes from positive to negative so to be sure we should check. 
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Put x = 0.45L and [ ] αα 0495.03645.0215.19.0 333 =+−= LLL
dx
dy  

Put x = 0.55L and [ ] αα 55.01663.0815.11.1 333 −=+−= LLL
dx
dy  

This confirms at x = L/2 the deflection is a maximum so putting x = L/2 into 
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When we have a point of inflection, 02
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dy
xd so we must find these. 
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xd α  This can only be solved by the quadratic 

formula.   Coefficients a = 6, b = -6L. c = L2

0.2113L and .7886L0
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Substitute back and the answers check out. 



Q1b The current i at time t in a series LR circuit is given by ⎟
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To investigate the effect on the current as R becomes small, use L'Hospital's rule to derive an 
expression for i when R approaches zero. Verify the result by expanding i as a Maclaurin's series in 
powers of R 
 
SOLUTION 

Clearly if we put R = 0   ( ) ( )
0
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0 =−=−= − EeEi and this is indeterminate. 

Using L'Hospital's rule we must differentiate the top and bottom with respect to R 

First rearrange to make it clear. 
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  Then differentiate the top and bottom 
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Maclaurin Expansion 
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Expanding L
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When R = 0 

L
tEi =  giving the same result 

 


